Hybrid Programming

Alice Koniges, Berkeley Lab/NERSC
Rusty Lusk, Argonne National Laboratory (ANL)
Rolf Rabenseifner, HLRS, University of Stuttgart, Germany

Gabriele Jost, Texas Advanced Computing Center

This short talk is a conglomeration of larger presentations given by
the above authors at a variety of tutorials including

SC08, SC09 (upcoming) ParCFD 2009, SciDAC 2009
We are grateful for the use of these slides at the NUG User Group Meeting

Computer Centers and Vendors are
Responding with New Designs

Virtually all upcoming systems have various forms of
heterogeneous parallelism

® NERSCG6 with its multicore design TBA
®* Blue Waters with its Power7 hardware threaded design

8 cores, 12 execution units/core, 4-way SMT/core

® ASC Sequoia (follow-on to BlueGene design) with anticipated
support for transactional memory

Experts everywhere are preparing for this architecture revolution
with new languages, extensions to old languages, tools (and angst)

Our goal at NERSC is to make this as painless as possible for
application scientists

We invite you to comment on our plans

NERSC Users Group Meeting 2009 2

Blue Waters Project

Power7 Chip: Heart of Blue Waters

B R L mq,lm B

® Base Technology
— 45 nm, 576 mm?
- 1.2 B transistors
® Chip
- 8 cores

-~ 12 execution units/core

- 4-way SMT/core
— Caches
= 32 KB |,D-cache, 256 KB L2/core
= 32 MB L3 (private/shared)
— Dual DDR3 memory controllers

= 100 GB/s sustained memory
bandwidth

, , Quad-chip MCM
Slide Courtesy Thom Dunning, NCSA

NERSC Users Group Meeting 2009

Blue Waters Project

Blue Waters Computlng System

System Attribute Ranger
Vendor Sun
Processor AMD Barcelona
Peak Performance (PF) 0.579
Sustained Performance (PF) <0.05
Number of Cores/Chip 4
Number of Processor Cores 62,976
Amount of Memory (TB) 123
Amount of Disk Storage (PB) 1.73 (s)
Amount of Archival Storage (PB) 2.5 (20)
External Bandwidth (Gbps) 10

Blue Waters
IBM

IBM Power’7/
>20 ~1
2 8

>3 >200,000
>0 >800
>5 >10
>200 >500
>10 100-400

Red numbers are ratios between Blue Waters and Ranger

NERSC Users Group Meeting 2009

Blue Gene/P integrates a Double “Hummer”
Floating Point Unit for added functionality

.Four Powerpc 450 Deta resd @ & Bicvcle Blue Gene[P AS'C
(PPC450) Cores, caChe a;?;;giﬁz%m'; 168/cycle read (each), 168/cycle write (each)
coherent N X (\
" N PPC450| | |\t L prerchng | & = = >

* Double "Hummer = L2 g e

. . . DDR-2 ®
floating point unit (FPU) $ 13 T ORAM (1 Conrger
per core EECI20] | ¢ digpProletching % = ,L

. FPU P—
- 64-bit (double 3)3<
precision) “:/
PPC 450 Pre :
. Capable of SIMD ——= !‘TL TR £
floating-point multiply Y 3 i DOR2 @
dd (FMA) yielding 4 e [

add () yielding PPC450| . ig=Prefeching | £ €%

flops/cycle per core = FPU L2 g

3.4 Gflop/s core
|2 CaChe, 2 KB, private 4 symmetnc ports for Internal bus 16B/cycle

. Tree, torus and global | DORZ DRAM

per core, 128-byte lines bamers = bus
* L3 Cache, 8 MB, shared DA racciile allons Ethemnet |
across all 4 cores, 128-byte Remote direct 2) $ o
. put” & “get Control 6 drechons 3ports* 8 4 pons, To 10Gb 2°168 bus @
lines Network tﬁ::ﬁ;l I:Gc:';ﬁ:a bidrectional o laver 13 PFOC speed

2 International Business Machines Corporation. 2007, 2008. Al rights reserved

© IBM Corporation
5

NERSC Users Group Meeting 2009

Next generation Sequoia’s programming
model will likely be multilevel

MPI_FINALIZE

MPI_INIT

MPI Call
TM/SE
[OpenMP)

MPI Call

ThreadO
Thread1
Thread2
Thread3

e 13 1-3

1-3

Possibly ~1.5 Million cores and even more threads!

Note: Speculative Execution (SE) and Transactional Memory (TM)

Diagram courtesy Mark Seager, LLNL

NERSC Users Group Meeting 2009

LI

SMP node

Socket 1

CPU

| _Quad-core__

Socket 2

CPU

| _Quad-core__

SMP node

Socket 1

CPU

| _Quad-core__

Socket 2

CPU

| _Quad-core__

Node Interconnect

Within the MPI-OpenMP hybrid model, there are

Which programming
model is fastest?

MPI everywhere? %

Fully hybrid

MPI| & OpenMP?T_5

In - between?

(Mixed model) E\U I

Historically hybrid

programming can be =

slower than pure
MPI

o

NERSC Users Group Meeting 2009 7

Programming models can be designed for
hybrid systems

® Pure MPI (one MPI process on each CPU) “MPI-Everywhere”
° Hybrid MPI+OpenMP l OpenMP inside of the) '
— shared memory OpenMP MP n
— distributed memory MPI I‘:’:’ ,‘3"’””‘*,-?," t,he ,',’,‘,"”es Node Interconnect
® Other: Virtual shared memory systems, PGAS, HPF, ...
® New Models combine MPI and UPC or CAF (see Lusk, et al. SC09,
SIAM Feb. 2009.)
MPI local data in each process || OpenlVIP (shared data) ,~ Master thread,
Sequential ’@‘ ‘ some_serial_code [lg oth/erltr{reads
program on socee #pragma omp parallel for

Explicit Message Passing
by calling MPI_Send & MP|_Recv

for (j=...;...; s j++)

block_to_be_parallelized

again_some_serial_code

L

|E| sIe@nglE'

NERSC Users Group Meeting 2009

MPI and Threads

MPI describes parallelism between processes (with
separate address spaces)

Thread parallelism provides a shared-memory model
within a process, commonly Pthreads and OpenMP

In the threads model of parallel programming, a single
process can have multiple, concurrent execution paths

Pthreads (Posix Threads) is a standard library
implementation that can be used for parallel programming

Pthreads generally provides more complicated and
dynamic approaches

OpenMP is a set of compiler directives, callable runtime
library routines, and environment variables that extend
Fortran, C and C++

OpenMP provides convenient features for loop-level
parallelism

OpenMP 3.0 adds task parallelism (released May 2008)

NERSC Users Group Meeting 2009

Hybrid Programming generally combines
message passing with shared memory

Other choices for a shared memory model include an
implementations by Microsoft and others, as well as Pthreads

In this talk, we concentrate on combining MPI with OpenMP

OpenMP consists mostly of directives, where as MPI, related
message passing libraries, and Pthreads methods consist of
library routines

Data movement in message passing libraries must be explicitly
programmed, in contrast to OpenMP, where it happens
automatically as data is read and written

One goal of OpenMP is to make parallel programming easy
It is also designed to be implemented incrementally

We first explain some basic concepts of OpenMP, since we assume
you are starting with an MPI program, or knowledge of MPI

NERSC Users Group Meeting 2009 10

Basic Concepts of OpenMP

OpenMP is an explicit programming model, namely the
programmer specifies the parallelism. The compiler and run time
system translate this into the parallel execution model.

The task of the programmer is to correctly identify the parallelism
and the dependencies

OpenMP can have both implicit and explicit synchronization points

Although OpenMP can be used beyond loop parallelism, we
recommend studying loop parallelism first as a way to understand
certain concepts such as private and shared variables, false
sharing, race conditions, ...

NERSC Users Group Meeting 2009 1

MPI Memory Model

Message Passing Interface
Memory Model:

- MPIl assumes a private address space
- Private address space for each MPI Process
- Data needs to be explicitly communicated

Applies to distributed and shared memory computer architectures

Message buffers
mpi_receive mpi_send

Address
Space PO

Address
Space PO

process 2 process 3

process 0 process 1

/

NERSC Users Group Meeting 2009

OpenMP Memory Model

OpenMP assumes a shared address space
No communication is required between threads
Thread Synchronization is required when accessing shared data

process 0

0

Shared address space

NERSC Users Group Meeting 2009

13

OpenMP Code General Structure

e Fork-Join Model:

e Execution begins with a single “Master Thread”

e Ateam of threads is created at each parallel region

e Threads are joined at the end of parallel regions

e Execution is continued after parallel region by the Master Thread
until the beginning of the next parallel region

time

Parallel Serial Parallel o Serial
- O/v — ——

execution o Serial §

Master Thread Multi-Threaded

NERSC Users Group Meeting 2009 14

The ParLab at Berkeley sponsored a
Parallel Computing Bootcamp

Note: All Bootcamp taped lectures, slides can be downloaded
- See http://parlab.eecs.berkeley.edu/bootcampagenda
— Including:

= OpenMP

» PGAS Languages

= OpenCL

» And several other interesting lectures

From this website, you can also download the following:
- makefile that should work on all NERSC clusters if you uncomment appropriate lines,
- job-franklin-serial, job-franklin-pthreads4, job-franklin-openmp4, job-franklin-mpi4,
- job-bassi-serial, job-bassi-pthreads8, job-bassi-openmp8, job-bassi-mpi8
- sample batch files to launch jobs on Franklin and Bassi. Use qsub to submit on
Franklin and lisubmit to submit on Bassi.
We are also preparing sample codes to be available from the NERSC Website

We recommend if you don’t know OpenMP, you watch the ParLab BootCamp talk by
Tim Mattson

NERSC Users Group Meeting 2009 15

Comments on Example from ParLAB Talk
by Tim Mattson, Intel Corp.

Program to compute Pl by quadrature, Tim starts with a simple serial
program:

static long num_steps = 100000;

double step;
void main()
{ int i; double x, pi, sum = 0.0;
step = 1.0/(double) num_steps;
x = 0.5 * step;
for (i=0;i<=num_steps;i++){
x+=step;

sum+=4.0/(1.0+x*x);

}

pi = step * sum;

NERSC Users Group Meeting 2009

16

Next he shows
Steps of Parallelization by OpenMP

Identify concurrency in the loop, iterations may be executed
concurrently:

for (i=0;i<=num_steps;i++){
x+=step;
sum+=4.0/(1.0+x*x);

Steps: isolate data tha must be shared from data that will be local
to a task

Redefine x to remove loop carried dependence

Look at how to rewrite the “reduction,” where results from each
iteration are accumulated into a single global sum

Trick to promote scalar “sum” to an array indexed by the number
of threads to create thread local copies of shared data

NERSC Users Group Meeting 2009

17

Examines differences between explicitly
specifying the OpenMP other methods

®* Final loop with explicit safe update of shared data

#include <omp.h>
static long num_steps = 100000;
#define NUM 4
double step;
void main()
{ double pi, sum = 0.0;
step = 1.0/(double) num_steps;
#pragma omp parallel num_threads(NUM)
inti, ID; double x, psum=0.0;
ID = omp_get _thread_num();
for (i=1D;i<=num_steps;i+=nthreads){
x=(i+0.5)*step;
psum+=4.0/(1.0+x*x);
}
#pragma omp critical
sum += psum

pi = step * sum;

® Along the way, example exposes concepts of private and shared
data, false sharing, and other concepts. Refer to ParLab talk/slides.

NERSC Users Group Meeting 2009 18

Another version of the same Pl program
uses common OpenMP constructs

Private clause for creating data local to a thread
Reduction clause for managing data dependencies

#include <omp.h>

static long num_steps = 100000; double step;
void main()

{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
#pragma omp parallel for private(i,x) reduction (+:sum)
for (i=0;i<=num_steps;i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

Most people would write the OpenMP in this fashion, but the
example serves to illustrate some of the steps behind the
directives and the thought process for shared/private variables

NERSC Users Group Meeting 2009

19

In order to do hybrid programming, models
must be combined via Standards

Hybrid programming (two programming models) requires that
the standards make commitments to each other on semantics.

OpenMP’s commitment: if a thread is blocked by an operating
system call (e.g. file or network 1/0O), the other threads remain
runnable.

— This is a major commitment; it involves the thread scheduler in
the OpenMP compiler’s runtime system and interaction with the
OS.

- What this means in the MPI context. An MPI call like MPIl _Recv
or MPI_Wait only blocks the calling thread.

MPI’s commitments are more complex...

NERSC Users Group Meeting 2009 20

The MPI Standard Defines 4 Levels of
Thread Safety that affect Hybrid

Note that these are not specific to Hybrid OpenMP Models

The are in the form of commitments that the multithreaded
application makes to the MPI implementation

- MPI_THREAD_ SINGLE: only one thread in the application

- MPI_THREAD_FUNNELED: only one thread makes MPI calls,
the Master Thread in the OpenMP context (next slide)

- MPI_THREAD_SERIALIZED: Multiple threads make MPI calls,
but only one at a time (not concurrently)

- MPI_THREAD_ MULTIPLE: Any thread may make MPI calls at
any time, no restrictions

MPI-2 defines an alternative to MPI_Init
- MPI_Init_thread(requested, provided)

= Allows applications to say what level it needs, and the MPI
implementation to say what it provides

NERSC Users Group Meeting 2009 21

What This Means in the OpenMP Context

MPI_THREAD_SINGLE
— There is no OpenMP multithreading in the program.
MPI_THREAD_FUNNELED
- All of the MPI calls are made by the master thread i.e., all MPI calls are
» Qutside OpenMP parallel regions, or
» |nside OpenMP master regions, or
» Guarded by call to MPI_Is_thread _main MPI call.
— (same thread that called MPI_Init_thread)

MPI_THREAD_SERIALIZED
#pragma omp parallel

#bragma omp atomic

...MPI calls allowed here...

}
MPI_THREAD_MULTIPLE

- Anything goes; any thread may make an MPI call at any time

NERSC Users Group Meeting 2009 29

Threads and MPI in MPI-2

®* An implementation is not required to support levels higher than
MPI_THREAD_SINGLE; that is, an implementation is not required
to be thread safe in order to be standard-conforming

¢ A fully thread-compliant implementation will support
MPI_THREAD_ MULTIPLE

® A portable program that does not call MPI_Init_thread shouid
assume that only MPlI_THREAD_SINGLE is supported

NERSC Users Group Meeting 2009 23

For MPI_THREAD_MULTIPLE

When multiple threads make MPI calls concurrently, the
outcome will be as if the calls executed sequentially in
some (any) order

Blocking MPI calls will block only the calling thread and
will not prevent other threads from running or executing
MPI functions

It is the user's responsibility to prevent races when
threads in the same process post conflicting MPI calls

User must ensure that collective operations on the same
communicator, window, or file handle are correctly
ordered among threads

NERSC Users Group Meeting 2009

24

The Current Situation

All MPI implementations support MPI_THREAD_SINGLE (duh).

They probably support MPl_THREAD_FUNNELED even if they
don’t admit it.

- Does require thread-safe malloc
— Probably OK in OpenMP programs
“Thread-safe” usually means MPI_THREAD_MULTIPLE.

This is hard for MPl implementations that are sensitive to
performance, like MPICH2.

- Lock granularity issue
- Working on lock-free MPICHZ2 implementation

“Easy” OpenMP programs (loops parallelized with OpenMP,
communication in between loops) only need FUNNELED.

—- So don’t need “thread-safe” MPI for many hybrid programs
— But watch out for Amdahl's Law!

NERSC Users Group Meeting 2009 25

How to determine thread support

MPI_Init_thread(&argc,&argv, MPI_THREAD_ MULTIPLE,&provided);
printf(“Supports level %d of %d %d %d %d\n”,

provided,

MPI_THREAD_ SINGLE,

MPI_THREAD FUNNELED,

MPI_THREAD_ SERIALIZED,

MPI_THREAD_ MULTIPLE);

Example output:
>Supports level10f0123

Support may vary depending on chosen compiler and MPI library.

NERSC Users Group Meeting 2009

26

Thread Support Levels on Franklin-PGl

PGl compiler

with libmpich.a:

+ MPICH_MAX_THREAD_SAFETY not set: Supports level0 of 012 3

+ MPICH_MAX_THREAD_SAFETY="single': Supports level 0 0of 012 3

+ MPICH_MAX_THREAD_SAFETY='funneled': Supports level1 0of 0123
+ MPICH_MAX_THREAD_SAFETY='serialized': Supports level 20f 012 3

+ MPICH_MAX_THREAD_SAFETY='multiple': This library does not support
multiple.

- with libmpich_threadm.a:

+ MPICH_MAX_THREAD_SAFETY not set: Supports level0 0of 012 3

+ MPICH_MAX_THREAD_SAFETY='single': Supports level0 of012 3

+ MPICH_MAX_THREAD_SAFETY='funneled': Supports level1 0of012 3
+ MPICH_MAX_THREAD_SAFETY='serialized"': Supports level20f012 3
+ MPICH_MAX_THREAD_SAFETY="'multiple': Supports level 30f0123

NERSC Users Group Meeting 2009 27

Thread Support Levels on Franklin-
PathScale and gcc

PathScale and gcc compilers give same result
- with libmpich.a:
+ MPICH_MAX_THREAD_SAFETY not set: Supports level 0 of 012 3
+ MPICH_MAX_THREAD_SAFETY='single': Supports level 0 0f012 3
+ MPICH_MAX_THREAD_SAFETY='funneled': Supports level1 0of 0123

+ MPICH_MAX_THREAD_SAFETY='serialized": Supports level2 0f 012 3

+ MPICH_MAX_THREAD_SAFETY='multiple': This library does not support
multiple.

- with libmpich_threadm.a not available

NERSC Users Group Meeting 2009 28

Thread Support Levels on Franklin-
Summary

®* Without setting the env variable, we always get '0°.

® To increase the supported level,
- We need to explicitly set the environment variable.

® The MPI_THREAD_ MULTIPLE level is currently supported only for PGI.
- To get this level, one needs to link against libmpich_threadm.a.

Thanks to Woo-Sun Yang, NERSC User Services, for testing this on Franklin

NERSC Users Group Meeting 2009 29

Argonne has developed tools to Visualize the
Behavior of Hybrid Programs

®* Jumpshot is a logfile-based parallel program visualizer of the
“standard” type. Uses MPI profiling interface.
® Recently it has been augmented in two ways to improve
scalability.
- Summary states and messages are shown as well as individual
states and messages.

» Provides a high-level view of a long run.

» SLOG2 logdfile structure allows fast interactive access
(jumping, scrolling, and zooming) for large lodfiles.

EFE]|

@@@@@@@@@@@@@@

‘ I

|

NERSC Users Group Meeting 2009

30

Jumpshot and Multithreading

Newest additions are for multithreaded and hybrid programs
that use pthreads.

- Separate timelines for each thread id

— Support for grouping threads by communicator as well as by
process

TimeLine : pthread_sendrecv.slog2 <Communicator-Thread View>

NERSC Users Group Meeting 2009

31

Using Jumpshot with Hybrid Programs

SLOG2/Jumpshot needs two properties of the OpenMP
implementation that are not guaranteed by the OpenMP
standard

- OpenMP threads must be pthreads

» Otherwise, the locking in the logging library necessary to
preserve exclusive access to the logging buffers would need
to be modified.

- These pthread ids must be reused (threads are “parked” when
not in use)

= Otherwise Jumpshot would need zillions of time lines.

At NERSC, we are currently examining the use of Jumpshot
and other tools for the analysis of hybrid programs

— Part of the Cray Center of Excellence (COE) Program

NERSC Users Group Meeting 2009

32

Some Available
Performance Tools

* —AllfMost Major HPC platforms

IPM Integrated Performance Manager, NERSC and others
Performance Visualization for Parallel Programs

» hitp://www-unix.mcs.anl.gov/perfvis (jumpshot, etc)
TAU http://www.cs.uoregon.edu/research/paracomp/tau/

» C++, Java, C, Fortran 90, HPF, and HPC++, and OpenMP

Vampir: http://www.vampir-ng.com for parallel programs (Tracing
supported through TAU, KOJAK, and Adaptor)

Pablo: http://www-pablo.cs.uiuc.edu/ 1/O and visualization
PAPI: Performance analysis using hardware counters

= http://icl.cs.utk.edu/projects/papi/
Aims: http://www.nas.nasa.gov/Groups/Tools/Projects/AIMS/

Paradyn - can operate on executable
http://www.cs.wisc.edu/~paradyn/

PARAVER http://www.cepba.upc.es/paraver

= MPI, OpenMP, Performance counters, system activity
GNU gprof
KOJAK http://www.fz-juelich.de/zam/kojak/

® Also most vendors support their own tools (e.g., Cray Apprentice2)

NERSC Users Group Meeting 2009 33

Vampir 4.0

File Global Displays VE]
: z H B S m
Vlsual Izatlon and .E‘fi 7‘53' Counter Timeline... Ctrl-C
! - Summary Timeling... Ctrl-y
A n a I ys i s Of grocess:'F'r Ctrl-P i
SR T Summary Chart... Ctrl-U
Parallel Programs Y2MPEIE EEEEEEEE e
— : / PI_Allreduce{0.541 s)

Ctrlt '\ i/ B 1P Wait(0 584 5)
=Trace data based - =
=Global displays show all selected processes
-Timeline: application execution over time
-Counter Timeline: counter dev. over time =" Vampir 4.0 - Timeline

setiv(2.009 s)

-Summary Timeline: shows parallelism .
' rocess 0 905 srhs 2 MPI
-Summary Chart: aggregated profiling . N LR TRTRR ..

] BCalculation

-Activity Chart: presents per—process profiling Process 2 SO0 R TTINDT i

Process 3 =304

-Call Tree: draws dynamic call tree Prossss 4 BETR

-Message Statistics: for each process pair Proces® L) Orion: proces
. g . g rocess b coi erns 4| Destination: Process 2
-1/O Statistics: MPI 1/O operation statistics Process 7 200 T s

-Collective Op. Statistics: collective operations | <~ Vampir 4.0 - Timeline Process 0 B
=Process displays show a single process per window |g

'ACth'ty Chal’t g‘q:?}::ationg soonoossal] :. . ._ E E . E

-Timeline ek SEEEE R g

_Ca” Tree @ eococcoooood | P Al PP] b P

786.43 3 ' i
. . 524 29 ¢3 ! ﬂ ﬁ ! i

Vampir Slides courtesy of e AN I S = W
Wolfgang E. Nagel, Holger Brunst TU Dresden. _86'786”3 st |

www.vampir-ng.com

Vampir — Routine Profiles and
Statistics

Setup Summary Chart

— Global Displays = =
Summary Chart bits
-~ Context Menu = buts
Select = All Symbols jactd
-~ Context Menu = (.
_ MPI_Recv
Options =Per Process MPI_Wait 0531 s |
ssor :|0.49? s
Selected group: :‘mpl-se"d 53 ::::
All Master Threads L ichange o.246 s
e Jo.213 s
MPI_Allreduce Jo.11ss
exchange 3]89.818 ms
MPI_Bcast 76.059 ms
IZnonm 44.973 ms
error 43.142 ms
TRACE_OHN 10.348 ms
pd

0086

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0s

Vampir 4.0 - Summary Chart

=

e

NERSC Users Group Meeting 2009

35

Vampir — Timeline Display

A

V] VAMPEI

000

Vampir 4.0 - Timeline

EMPI

Process 0'1 4

i MApplication

Process 1 W i w7 AP
Process 2 |l_ | Setup
Process 3 [M Calculation
Process 4 l] WS
Process 5 |[_
Process 6 | || Timeline Display
Jaocess |'_ | 1N E zoomed
Process 8 .
Process 9 | LR iBE ©00 vampir 4.0 - Timeline NV
Process 10 lj " '
e Ir i Process 0 s | el
Process 12 | Ll Process 1 ; T MPLReov gy e
Process 13 | [l SR ORI N e PSR R et bt MCalculation

l_ Process 2 MPI_Recv Wl - Wrapper
Process 14 ‘ Process 3
Process 15 Process 4 P NN et

10] Process 5

Process 6
Process 7

Process 8
® Can display MPI collective | rrocess s [l S e e R
and /O operations icsseiam b KR RTATERRAN B A A i
., Process 11
®* Tozoom, draw rectangle wii o ... i s i NENJETE:
the mouse Process 13 FRFEFERERHREREREFERRSR: PR sirzire ndl | Ga A UL
RN WE R A d AT AT FrE L L
®* Also used to select sub— Process 14 WA _J__L.__.ﬂ__ﬁ__l_‘,.;

- u - Pro 15
intervals for statistics e T B R e T

Vampir — Timeline Display- Info Dialogs -

'©O0 vampir 4.0 - Identified Activity

000

Process 0 Vampir 4.0 - Identified Message X
Process 1 Origin: Process 5

Process 2 EaR Il s St Destination: Process 1

Process 3 Tag: 3

Process 4 =

Process 5 Communicator: 0

Process 6 | e e S Interval: 11.275123 s - 11.275166 s
Process 7 T {15580 ‘] h_s__ (KT Duration: 42.4us

Process 8 Length: 640 bytes

Process.d Datarate: 14.395 Mbytes/s

Process 10

Process 11 [

Process 12
Process 13
Process 14

Vampir 4.0 - Timeline

OO0 vampir 4.0 - Source View Process 9

Location:
Operation:
Activity:
Interval:
Duration:
Source:

Hext Interval:

Previous Interval:

I ul

Process 9

ssor (327)

Setup (6)

11.271298 s - 11.282998 s
11.7008 ms

buts.f : 263

press button for search

press button for search

subroutine buts{ ldmx, ldmy, ldmz,
nx, ny, nz, k,
omega,
v, tv,
d, udx, udy, udz,

4
5
B
7
8 4
ist, iend, jst, jend,
nx0, ny0, ipt, jpt)
11
1
1.

VNV NV NV NV NV

NERSC Users Group Meeting 2009 37

Cray Apprentice?

pprentice

-

i T T T T i
Call Graph Profile e i
..' -_Iéjl-u A : | = :
I— SR ~ 1 S
- e =
o e : A e T
— _—— Batn con Lol ey TRy . |
e o0
~ompb- B - =]
=t ! —’ -
. Communication & -
. | T — I/0 Activity View
Load balance ! | |
VIEWS s conunia: | - :
.,__ - -T - == J :n Hep
e _ | KN
—— o 3“! " - =
= L =
— SHER L ot -
Source code seavyssumua: - et i

mapping =

-

M

-~
Sid

(X 1 1138 1700

: éTimé Line Pair-wise
: fViews Communication View

4 Al o= oo

" NERSC Users“Group M—eeting 2009

TAU Performance System Components

http://www.cs.uoregon.edu/research/tau/home.php

Performance Data Mining

Scripting Interface

PerfExplorer Component Interfaces
Data Components

TAU Architecture Program Analysis

Application
/ Library

\Y;

Instrumentation

C/C++
parser

Fortran parser
F77/90/95

Program
documentation

4@ Application

component glue

@ C++/F90/95
interoperability

— Automatic source
instrumentation

e
event I
selection

event

information Q
& o

Fortran
1L analyzer ' IL analyzer

Measurement

Event creation and management
event entry/exit atomic event event
identifier events events mapping control
Profiling Tracing

P atomic entry/exit trace record trace
statistics I I profiles I I profiles I Ibufferingl I creation 1/0
phase /0 profile timestamp trace trace
profiles profiles sampling generation filtering merging

Program
Database
Files

Parallel Profile Analysis

Performance Analysis Programs

TAU Performance System
Performance data sources OS and runtime system modules e/ profile I Perlg;\: nee
<3 ‘ ’ metadaia =
N
*
raw profiles
Analysis
k Results
* gprof I
QM) * mpiP % Expert
& : psrun . | Knowledge
 HiPMroolkit [Java PerfpMF AP S I
oL (5L (PostgresoL, MySOL, DB, Oracte))
er:nt s trmeniation gvent . document .
selection information _________ N !
‘ formatted - - 4
| profile data [X X]
e
. A Call Graphs | Histograms Call Trees
Profile Data Management (PerfDMF) Trace Data Management) 2 2 -0

Compute Node

TAU, mpiP, ompP,
HPMToolkit, Cube,
HPCToolkit, Gprof,

MON Daemon

N
4/ sonsors
Systaminio

profile etadata profile trace trace
translators (XML) database translators storage

Supermon

Jproc

ParaProf

. Dynaprof, PSRun
Profile Analysis (ParaProf) Trace Visualizers Trace Analyzers ' ""h‘.él‘"’%':“‘.:'" -
— : | ‘monhole
Runtime Data
‘ Vampir ‘ Expert ’ Collection

Supermon, MANet |
(o] H I
| TAU_DB_DUMP)———% " Transport

‘ JumpShot ‘ ProfileGen

Application

Proﬁle Dqtq Mining (ferfEJgplf{rer)
: |

Vampir DBMS
Server

‘ Paraver

PostgresQL, MySQL Scripting Interface
Oracle, DB2, Derby

Example
Ciert

Jython Visoaeer

B
NERSC Users Group Meeting #8p@m Sameer Shende U. Oregon 39

TAU Performance System Architecture

http://www.cs.uoregon.edu/research/tau/home.php
Instrumentation —_—

event source object library binary virtual
selection code code wrapper code machine

event

information
MEASUREMENT API

Measurement

Event creation and management

event entry/exit atomic event event
identifier events events mapping control

Profiling Tracing

statistics atomic entry/exit trace record trace
profiles profiles buffering creation 1/0

phase /O profile timestamp trace trace
profiles profiles sampling generation filtering merging

Performance data sources OS and runtime system modules

. hardware .]
-
N

system runtime

NERSC Users Group Meeting 7#860m Sameer Shende U. Oregon 4o

IPM Performance Tool

Integrated Performance Monitoring Concurrency
16 64 256 1024
® portable, lightweight ,
® scalable profilin r
P d C i . I0
® fast hash method h]
1 MPI
®* profiles MPI topology t B]
. . e CALC
® profiles code regions «
® open source E c
® easy to use <
D
But, your code’s “hot” spots
Developed by David Skinner, LBNL may vary depending on architecture

NERSC Users Group Meeting 2009 41

Extremely difficult to use tools on very large
numbers of processors: research area

- TotalView scalability
» BlueGene/L port included significant scaling requirements
» Collaborative scalability project targeting traditional OSs
» Scalable subset debugging on BG/L

- Scalable, lightweight tools
» “Focused tools”: fewer features, but extreme scalability
= Stack Trace Analysis Tool (STAT)
= Scalable infrastructure: LaunchMON, MRNet

— Automatic error detection
= Memory correctness tools
= Umpire
» Threading tools

Adapted from Scott Futral, Dong
Ahn, and Greg Lee, LLNL

NERSC Users Group Meeting 2009

42

Advice for Debugging and Tuning
MPI-OpenMP Hybrid Codes

Debug and Tune MPI code and OpenMP code separately.

Decide which loop to parallelize. Better to parallelize outer loop.
Decide whether Loop permutation or loop exchange is needed.

Choose between loop-based or SPMD.
Use different OpenMP task scheduling options.

Experiment with different combinations of MPI tasks and number
of threads per MPI task.

Adjust environment variables.

Aggressively investigate different thread initialization options and
the possibility of overlapping communication with computation.

See afternoon section on hybrid programming

Adapted from Helen He LBL-NERSC

NERSC Users Group Meeting 2009 43

Performance Strategies

After isolating portions of code to optimize, what next?
® Global Performance Strategies

— Degree of parallelism over entire code

— Number of parallel tasks as compared with available numbers
of processors

— Uniformity of tasks / load balancing
— Synchronization requirements

® Processor-specific strategies
— If cache-based architecture: data locality
- Parallelism via a “super scalar” processor
— Pipelining
— Vector processors

®* But, the way things are progressing, you may want to wait
on optimization and instead consider

- New languages
— Auto-tuning options

NERSC Users Group Meeting 2009

44

Rabensiefners Models for Hybrid

hybrid MP1+OpenMP
MPI: inter-node communication
OpenMP: inside of each SMP node

No overlap of Comm. + Comp.

MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.

MPI communication by one or a few threads
while other threads are computing

Masteronly

MPI only outside
of parallel regions

NERSC Users Group Meeting 2009

45

Hybrid Masteronly

Masteronly Advantages

MP! only outside - No message passing inside of the SMP nodes
of parallel regions
— No topology problem

for (iteration) Major Problems
{# " — All other threads are sleeping
pragma omp paralle . . '
numerical code while master thread communicates!
[*end omp parallel */ — What is inter-node bandwidth?
[* on master thread only */ — MPI-lib must support at least
MPI_Send (original data MPI THREAD FUNNELED
to halo areas — —
in other SMP nodes)

MPI_Recv (halo data

from the neighbors)
} /*end for loop

NERSC Users Group Meeting 2009 46

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

if (my_thread_rank < ...){

MPI_Send/Recv....
i.e., communicate all halo data

} else {

Execute those parts of the application
that do not need halo data
(on non-communicating threads)

Execute those parts of the application
that need halo data
(on all threads)

This can get very complicated.
Looks a little bit more like MP| Programming.

NERSC Users Group Meeting 2009

47

Overlapping Communication and Computation

MPI communication by one or a few threads while other threads are computing

Three problems:
® the application problem:

— one must separate application into:
= code that can run before the halo data is received

= code that needs halo data
> very hard to do !!!

® the thread-rank problem: ———

- comm. / comp. via
thread-rank

— cannot use
work-sharing directives

> loss of major
OpenMP support
(see next slide)

®* the load balancing problem

if (my_thread_rank < 1) {

MPI_Send/Recv....

} else {

}

my_range = (high-low-1) / (hum_threads-1) + 1;
my_low = low + (my_thread_rank+1)*my_range;
my_high=high+ (my_thread_rank+1+1)*my_range;
my_high = max(high, my_high)

for (i=my_low; i<my_high; i++) {

}

NERSC Users Group Meeting 2009

48

Overlapping Communication and Computation

MPI communication by one or a few threads while other threads are computing

Subteams

Important proposal
for OpenMP 3.x
or OpenMP 4.x

Barbara Chapman et al.:

Toward Enhancing
OpenMP’s Work-Sharing
Directives.

In proceedings, W.E.
Nagel et al. (Eds.): Euro-
Par 2006, LNCS 4128, pp.
645-654, 2006.

#pragma omp parallel

{
#pragma omp single onthreads(0)
{
MPIl_Send/Recv....
}
#pragma omp for onthreads(1 : omp_get_numthreads()-1)
for(........)

{ I* work without halo information */
} [* barrier at the end is only inside of the subteam */

#pragma omp barrier
#pragma omp for

for(........)
{ I* work based on halo information */
}

NERSC Users Group Meeting 2009 49

Multi-zone NAS Parallel Benchmarks -
Characteristics

Aggregate sizes and zones:

- Class B: 304 x 208 x 17 grid points, 64 zones

_ Class C: 480 x 320 x 28 grid points, 256 zones EXpectations:
— Class D: 1632 x 1216 x 34 grid points, 1024 zones(Pure MPI:)

— Class E: 4224 x 3456 x 92 grid points, 4096 zones| Load-balancing
BT-MZ- problems!

Block tridiagonal simulated CFD application Good candidate
- Size of the zones varies widely: for
= large/small about 20 MPI+OpenMP__/

» requires multi-level parallelism to achieve a good load-balance

SP-MZ: ~

Scalar Pentadiagonal simulated CFD application Load-balanced on
- Size of zones identical MPI level: Pure MPI
= no load-balancing required should perform best
greq — y

o

NERSC Users Group Meeting 2009 50

Sun Constellation Cluster Ranger (1)

Located at the Texas Advanced Computing Center (TACC),
University of Texas at Austin (http://www.tacc.utexas.edu)

3936 Sun Blades, 4 AMD Quad-core 64bit 2.3GHz processors per
node (blade), 62976 cores total

123 TB aggregrate memory
Peak Performance 579 Tflops
InfiniBand Switch interconnect
Sun Blade x6420 Compute Node:
— 4 Sockets per node
— 4 cores per socket
— HyperTransport System Bus
— 32GB memory

NERSC Users Group Meeting 2009

51

Sun Constellation Cluster Ranger (2)

Compilation:
— PGI pgf90 7.1
— mpif90 -tp barcelona-64 -r8

Cache optimized benchmarks
Execution:

— MPI MVAPICH

— setenv
OMP_NUM_THREAD
NTHREAD

— |brun numactl bt-mz.exe
numactl controls

— Socket affinity: select
sockets to run

— Core affinity: select cores
within socket

— Memory policy: where to

allocate memory
— http://www.halobates.de/numaapi3.pdf

Socket

NERSC Users Group Meeting 2009

52

NPB-MZ Class E Scalability on Ranger

NPB-MZ Class E Scalability on Sun Constellation

5000000 -
4500000 ® SP-MZ (MPI)
4000000 0 SP-MZ MPI+OpenMP o
0 BT-MZ (MPI)
3500000 B BT-MZ MPI+OpenMP
23000000
2 2500000
= 2000000
1500000 -
1000000 H
500000 -
4 EE §
1024 2048 o 409 ‘}:Qi\

4 BT)
Significant improve-
ment (235%):
Load-balancing
issues solved with

_ MPI+OpenMP
|

4 sP)

Pure MPI is already
load-balanced.

But hybrid
programming

_ 9.6%faster

Scalability in Mflops
MPI1/OpenMP outperforms pure MPI

Use of numactl essential to achieve scalability

NERSC Users Group Meeting 2009

" Cannot be build for]
8192 processes!

Hybrid: b
SP: still scales

BT: does not scale)
(]

53

Cray XT5: NPB-MZ Class D Scalability

Results reported for
3000 - — Class D on 256-2048 cores
2048 cores
2500 —
BBT-MZ Gops
best of category
2000 T L sp vz Gops T .-~ SP-MZ pure MPI scales up to
. 1024 cores 1024 cores
g 1500
o
512 cores
1000 "1 556 cores

“--e SP-MZ MPI/OpenMP scales to
v 2048 cores

--e SP-MZ MPI1/OpenMP

v outperforms pure MPI for 1024
. cores

500

-1

:i Unexpected!]
--+¢ BT-MZ MPI does not scale
| ‘e BT-MZ MPI/OpenMP scales to
NO > N A N N O X SN b”
F o i oF ab gt oF W o F oF b i aF f
O P G S R A L @b?’ R
MPIxOpenMP

2048 cores, outperforms pure
MPI

Courtesy of Gabriele Jost (TACC/NPS)

NERSC Users Group Meeting 2009

54

NPB-MZ Class D on IBM Power 6:
Exploiting SMT for 2048 Core Results

Doubling the number of threads

1024 cores

2048
“cores”

2500

best of category

B BT-MZ Gops \\
2000
B SP-MZ Gops

1500

1000

Gop/s

500

= N < 0 +d N 0N T 0O
X X X X X X X X X X X X «
00 < &N W O 0 < &N N O 0 < X
N O M = N N O M 4 1N &N O
— N n N o™

MPIxOpenMP

Courtesy of Gabriele Jost (TACC/NPS)

—

x
<
(o)
o
i

512x2
256x4
128x8
64x16
2048x1

1024x2
512x4
256x8

NERSC Users Group Meeting 2009

through hyperthreading (SMT):
#!/bin/csh

#PBS -1 select=32:ncpus=64:
mpiprocs=NP:ompthreads=NT

L/

e Results for 128-2048
cores

e Only 1024 cores were
available for the
experiments

e BT-MZ and SP-MZ
show benefit from

Simultaneous
Multithreading (SMT):

2048 threads
on 1024 cores

55

Conventional Multi-Threading

Functional
Units H D Time >
N Inininininl Iniml I=sisisls
X OO0O OO O OO m
FRO OO OO OO0
FP OO OO0 DOm0
ol il | Isisisinisiaials
ST MO0 O OO0
SN | Ininininimimininl
CRL MO0 OO OO OO OO
B Thread 0 I Thread 1

Threads alternate

— Nothing shared

NERSC Users Group Meeting 2009

Charles Grassl, IBM

56

Simultaneous Multi-Threading

8

Fxo B JC B I

Fx1 [JIC 10 10]| I.I:l
rro [IR CICIC]
FPr I T B I I
tso B I 1111 I BN
ts1 BRI A 1]

srx [N 1[N B B
cre [I ITEECIC I I]

B Thread0 B Thread 1

Simultaneous execution
- Shared registers
— Shared functional units

NERSC Users Group Meeting 2009

Charles Grassl, IBM

57

AMD Opteron Processor

16 instruction bytes fetched per cycle

Fetch

Bra

Scan/Align

Fastpath

= é —/
c noPs v v
a nstruction Control Unit (72 e
-
(a]
Request
Queue | Int Decode & Rename | | FP Decode & Rename |
Crossbar L ‘ * * * *
Res Res Res 36-entry FP scheduler
Memory ‘ ‘ ‘
Controller <-| AGU |—| AGU |—| AGU FADD FMUL FMISC
ALU H ALU H ALU
HyperTransport™
MULT| 9-way Out-Of-Order execution

b 36 entry FPU instruction scheduler

64-bit/80-bit FP Realized throughput (1 Mul + 1 Add)/cycle: 1.9 FLOPs/cycle

o 32-bit FP Realized throughput (2 Mul + 2 Add)/cycle: 3.4+ FLOPs/cycle

NERSC Users Group Meeting 2009

Courtesy John Levesque

58

Simplified memory hierachy on the AMD
Opteron

. 16 SSE2 128-bit registers
reQISterS ? 16 64 bit registers
2 x 8 Bytes per clock, i.e. Either 2 loads, 1 load 1 store, or 2 stores (38 GB/s on 2.4 Ghz)
* " 64 Byte cache line
L1 data cache = complete data cache lines are loaded from main
memory, if not in L2 cache
= if L1 data cache needs to be refilled, then
8 Bytes per clock storing back to L2 cache

‘ " 64 Byte cache line

" write back cache: data offloaded from L1 data
cache are stored here first
until they are flushed out to main memory

L2 cache

16 Bytes wide data bus => 6.4 GB/s for DDR400

¥

Main memory

NERSC Users Group Meeting 2009 Courtesy John Levesque

59

Hybrid parallelization affords new

opportunities

Nested Parallelism
Load-Balancing

Memory consumption

Opportunities, if MPIl speedup is limited due to “algorithmic” problem

MPI scaling problems

NERSC Users Group Meeting 2009

60

Load-Balancing
(on same or different level of parallelism)

® OpenMP enables
— Cheap dynamic and guided load-balancing
- Just a parallelization option (clause on omp for / do directive)
- Without additional software effort
- Without explicit data movement

® On MPI level

- Dynamic load balancing requires
moving of parts of the data structure through the network

— Significant runtime overhead
- Complicated software / therefore not implemented

®* MPI & OpenMP

- Simple static load-balancing on MPI level, | medium quality
dynamic or guided on OpenMP level cheap implementation

NERSC Users Group Meeting 2009 61

Memory consumption

Shared nothing
— Heroic theory
— In practice: Some data is duplicated

MPI & OpenMP
With n threads per MPI process:

-~ Duplicated data is reduced by factor n

NERSC Users Group Meeting 2009

62

Memory consumption (continued)

Future:

With 100+ cores per chip the memory per core is limited.

— Data reduction through usage of shared memory
may be a key issue

— Domain decomposition on each hardware level
» Maximizes
— Data locality
— Cache reuse
* Minimizes
— CCnuma accesses
— Message passing
— No halos between domains inside of SMP node
= Minimizes
— Memory consumption

NERSC Users Group Meeting 2009

63

How many multi-threaded MPI processes
per SMP node

SMP node = with m sockets and n cores/socket

How many threads (i.e., cores) per MPI process?

— Too many threads per MPI process

—> overlapping of MPIl and computation may be necessary,
- some NICs unused?

- Too few threads
- too much memory consumption (see previous slides)
Optimum
- somewhere between 1 and m x n

NERSC Users Group Meeting 2009

64

Opportunities, if MPI speedup is limited
due to “algorithmic” problems

® Algorithmic opportunities due to larger physical domains inside of
each MPI process

—> If multigrid algorithm only inside of MPI processes

- If separate preconditioning inside of MPIl nodes and between MPI
nodes

- If MPI domain decomposition is based on physical zones

NERSC Users Group Meeting 2009 65

To overcome MPI scaling problems

Reduced number of MPl messages,
reduced aggregated message size

} compared to pure MPI
MPI has a few scaling problems
- Handling of more than 10,000 processes
— lrregular Collectives: MPI_....v(), e.g. MPI_Gatherv()
» Scaling applications should not use MPI_....v() routines
- MPI-2.1 Graph topology (MPI_Graph_create)
> MPI-2.2 MPI_Dist_graph_create_ adjacent
— Creation of sub-communicators with MPI_Comm_ create
» MPI-2.2 introduces a new scaling meaning of MPI_Comm_create

Hybrid programming reduces all these problems (due to a smaller number of
processes)

NERSC Users Group Meeting 2009 66

Summary of Hybrid Programming

MPI + OpenMP

¢ Significant opportunity - higher performance on fixed number of cores
®* NPB-MZ examples

- BT-MZ - strong improvement (as expected)

- SP-MZ - small improvement (none was expected)

® Often however, no speedup is obtained, especially for naive
implementations

® Hybrid MPI + OpenMP can solve certain problems with MPI-Everywhere
- Load balancing
-~ Memory consumption
- Two levels of parallelism
» Quter -» distributed memory - halo data transfer - MPI
* [nner - shared memory - ease of SMP parallelization> OpenMP

NERSC Users Group Meeting 2009 67

Summary (cont)

MPI+OpenMP — Pitfalls:
® Problems with OpenMP performance remain
— On ccNUMA - e.g., first touch
— Pinning of threads on cores
® Problems with combination of MPI & OpenMP
- topology and mapping problems
— mismatch problems
® Most hybrid programs = Masteronly style
* Overlapping comm{hication and computation with several threads
- Requires thread-safety quality of MPI library
— Loss of OpenMP support - future OpenMP subteam concept

NERSC Users Group Meeting 2009 68

Hybrid Programming: more information

4)

“Hybrid MPI and OpenMP Parallel Programming”

SCO09 half-day tutorial M09, Monday, 8:30am — 12:00pm
. J

Reminder, these slides are excerpted various tutorials
given by

Rolf Rabenseifner, Gabriele Jost, Rusty Lusk, Alice
Koniges, et al.

including

SCO08, SC09 (upcoming) ParCFD 2009, SciDAC 2009
We are grateful for the use of these slides at the NUG
User Group Meeting

NERSC Users Group Meeting 2009

